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Let D be the open unit disk in the complex plane, and let C be its boundary,

the unit circle. If x £ C, then by an arc at x we mean a simple arc y with one end

point at x such that y-{x}£ö. If/is a function mapping D into some metric

space M, then the set of curvilinear convergence of/is defined to be

{x e C: there exists an arc y at x and there exists a point

p e M such that f(z) ->p as z -»■ x along y}.

If ^ is a function whose domain is a subset F of the set of curvilinear convergence

of/ then <f> is called a boundary function for/if, and only if, for each x e E there

exists an arc y at x such that/(z) -*■ <f>(x) as z -> x along y. Let 5 be another metric

space. We shall say that a function <f> is of Baire class ^ 1(5, M) if

(i) domain <£ = S,

(ii) range ^ £ M, and

(iii) there exists a sequence {<£„} of continuous functions, each mapping S into

M, such that <f>n^>-<p pointwise on 5.

We shall say that (f> is of honorary Baire class ^ 2(S, M) if

(i) domain <f> = S,

(ii) range ^£M, and

(iii) there exists a countable set TVs 5 and there exists a function y!r of Baire

class ^ 1(5, M) such that <f>(x) = tp(x) for every xe S-N.

It is known that if/is a continuous function mapping F into the Riemann sphere,

then the set of curvilinear convergence off is of type Fa6, and any boundary func-

tion for/is of honorary Baire class ^2(C, Riemann sphere). (See [3], [4], [5], [6],

[9].) J. E. McMillan [6] posed the following problem. If A is a given set in C of

type Fao, and if </> is a function of honorary Baire class Ú2(A, Riemann sphere),

does there always exist a continuous function / mapping D into the Riemann

sphere such that A is the set of curvilinear convergence of/ and <f> is a boundary

function for /? The purpose of this paper is to give an affirmative answer to

McMillan's question. However, the corresponding question for real-valued func-

tions remains open. (See Problems 1 and 2 at the end of this paper.) In proving

our result, we first give a proof under the assumption that <j> is a bounded complex-

valued function, and we then use a certain device to transfer the theorem to the

Riemann sphere. As we shall indicate in an appendix, the same device can be
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used to transfer certain results concerning real-valued functions of the first Baire

class to the case of functions taking values on the Riemann sphere.

Our proof is divided into several major steps, which are labeled (A), (B), (C),

etc. The proofs of some of the major steps are divided into smaller steps, which

are labeled (I), (II), (III), etc. The results (A) and (B) are taken from the author's

doctoral dissertation [5].

Throughout this paper we shall use the following notation. R denotes the set of

real numbers, S2 denotes the Riemann sphere, and Rn denotes «-dimensional

Euclidean space. Points in Rn will be written in the form (xu x2,..., xn} (rather

than (xi, x2,..., xn)) in order to avoid confusion with open intervals of real

numbers in the case « = 2. The empty set will be denoted by 0. When we speak of a

complex-valued function, we mean a function taking only finite complex values.

The closure of a set F will be denoted either by F or by Cl F. If 7 is an interval

of real numbers, then 7* denotes the interior of I. If p is a point of some metric

space and r e (0, +00), then S(r,p) denotes the set of all points of the space having

distance (strictly) less than r from p.

We define

Q = {<x, j> g R2 : -1 S x ^ 1, 0 < y g 1},

X = «x, 0> : -1 < x < 1},

77 = {<X;y}eR2 :y > 0}.

It will be convenient to identify (x, 0> with the real number x, and X with (—1, 1).

If/is a complex-valued function defined in Q, then we shall understand the set of

curvilinear convergence of/ to mean the set of all x e X for which there exists an

arc y at x (contained in the interior of Q except for its end point at x) such that /

approaches a finite limit along y. If a e X, e> 0, and 0 < 9 < \n, then we let

s(a, £, 9) = «x, v> g R2 : 0 < v < e, a-y ctn 9 < x < a+y ctn 9}.

Thus s(a, e, 9) is the interior of an isosceles triangle in 77 with apex at a.

(A) If A^X is a set of type Fa6, then there exists a bounded continuous real-

valued function g defined in Q such that

(i) for each x e A, g(z) -^- 0 as z approaches x through s(x, 1, %n), and

(ii) if x e X, and if there exists an arc y at x such that g(z) —> 0 as z approaches x

along y, then x e A.

(I) Let Ex and E2 be two sets on the real line. A point p e R will be called a

splitting point for Ex and E2 if either

(i) xx tip for all xx e Ex and p á x2 for all x2 e E2, or

(ii) x2 ¿p for all x2 e E2 and p^xx for all xx e Ex.

We will say that Ex and E2 split if and only if there exists a splitting point for Ex

and F2.

(II) By a special family we mean a family !F of subsets of X such that

(i) ¡F is nonempty,
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(ii) J5" is countable,

(iii) each member of !F is compact,

(iv) if E,Fe^, then either E=F, E n F= 0, or F and F split.

(III) If Fs Z is an F„ set, then there exists a special family ^ such that E= (J ÍF.

Proof. We can write E= \J¡?= x An, where Ax = 0, An is closed, and An^An + x

for all «. Observe that if / is any open interval contained in X, then there exists a

countable family {./„}"= 1 of compact intervals contained in X such that /= (Jr?= 1 A,

and n^m implies that Jn and Jm split. Since X—An is a countable disjoint union of

open intervals, it follows that we can choose (for each «) a family

of compact intervals such that X— ̂ 4n = (Jf= x InJ, and j^k implies that InJ and

In%k split. Let

¿F = L4J u {/„,, nAn + 1:n= 1,2,...;j=. 1,2,...}.

Then ^ is a countable family of compact sets, and

F = U A. = ¿1 u Ü A+1 n (X-A)
n=l n=l

= AuÛ   U ^n+1n/n>i
71=1    J=l

Let Fx and F2 be any two distinct members of &. If either Fx or F2 is Ax= 0,

then Fx and F2 are automatically disjoint. If neither Fx nor F2 is Ax, then we can

write

Fl   =  F(l),;(l) ^ ^n(l)+ 1)

F2   =  /„(2),«2) ^ ^71(2)+ 1-

If «(1) < «(2), then «(1) +1 ^ «(2), so

F2  = Ai(2),«2) ^ ^n(2)+ 1  =   -*— ^n(2)  =   -A--^n(l) + l  —   X — Fx,

and therefore Fj and F2 are disjoint. If «(2)<«(1), a similar argument shows that

Fx and F2 are disjoint. Now suppose «(1) = «(2). Then, since Fx + F2, we have

7'(1)#7'(2)- So /„(i),«2) = F(2),i(2) and IniX)JW split, and consequently Fx and F2 split.

We have shown that any two distinct members of éW either split or are disjoint, so

J5" is a special family.

(IV) Let A ̂  X be a set of type F„6. Then there exists a sequence of special

families {^}"= 1 such that

(o A=nz=AU#n),
(ii) iin^l and Ee^n + x, then there exists F £ J^ with E^F.

Proof. There exist F„ sets AX^A2^A32 ■ ■ ■ such that ^ = f|"=i ^»- By (III),

we can choose (for each «) a special family Sn such that ,4n= (J ^n. Let éWx = Sx.

For «^ 1, let

^n+1 = {FnF:FE^n   and   £e^ntl}.
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By induction on n, one can show that each ^ is a special family and that An=\J&n.

It is clear that the other conditions are satisfied.

(V) Suppose that 7 is a nonempty interval with 7s X, and let a, b (a S b) be the

end points of 7. By Trap (J, e, 9) (where 9 e (0, Jk) and e > 0) we mean the trapezoid-

shaped open set defined by

Trap (J, e, 9) = {(x, y} : 0 < y < e, a+y ctn 9 < x < b-y ctn 9}.

For 9 g (0, ^tt) let Tri (J, 9) be the closed triangular area defined by

Tri (J, 9) = {O, y} : y ^ 0, a+y ctn 9 <= x ^ b-y ctn 9}.

If K is a nonempty compact subset of X, let J(K) be the smallest closed interval

containing K. If e > 0 and 0</9<<x<-Ln-, then we define

F(7C e, a, jS) = Trap (7(F), e, «)- U Tri (7, ß),

where J denotes the (possibly empty) set of disjoint nonempty open intervals

whose union is J(K) — K.

We state without proof the following readily verifiable facts ((VI) through

(XVIII)).
(VI) s(x, e, 9) is an open subset of 77.

(VII) Cl [s(x, e, 9)] n X={x}.

(VIII) If e<e' and B'<9, then Cl [s(x, e, 9)] n 77ss(x, e', 9').

(IX) If x^y and e, 9 are given, then there exists S>0 such that, for every

7? Ú 8, i(x, e, 0) and s( v, tj, #) are disjoint.

(X) F(F, e, a, ß) is an open subset of 77.

(XI) If Ki and K2 split, then, for any tlt e2, a, and ß, B(KU elt a, ß) and

B(K2, e2, a, ß) are disjoint.

(XII) If Kx and K2 are disjoint compact subsets of X, and if e, a, ß are given,

then there exists 8 > 0 such that for every r] ̂  8, 5(7^, e, a, /J) and B(K2, r¡, a, ß) are

disjoint.

(XIII) Cl [B(K, e, a, ß)] n X^K.

(XIV) Suppose that KX^K, e>£l>0, and 0<ß<ß1<a1<a<Tr/2. Then

Cl [Fi/sTi, «j, ai, ft)] n 77sF(F, ., a, ß).

(XV) Suppose that <x<0<^7r and x$J(K)*. Then, for any e, eu and ß,

B(K, e, a, ß) and s(x, *u 9) are disjoint.

(XVI) Suppose that x $ K and that e, a, ß, 9 are given. Then there exists 8 > 0

such that for every í¡í8, s(x, r¡, 9) and B(K, e, a, ß) are disjoint.

(XVII) Suppose that x $ K and that 8, a, ß, 9 are given. Then there exists e > 0

such that for every tj á e, s(x, 8, 0) and B(K, r¡, a, ß) are disjoint.

(XVIII) Suppose that xeKc\J(K)* and 0<¿9<a< 9<%n. Let s be given.

Then there exists 8>0 such that for every -ng 8, Cl [j(jc, r¡, 9)] n H^B(K, e, a, ß).

(XIX) If !F is a special family, let ^"2 be the set of all members of & that have

two or more points, and let E(3F) be the set of all end points of intervals J(F),

where FetF and F^ 0.
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Suppose that 0<ß<a<6<^Tr, and that !F is a special family. By a pair of special

a, ß, 9 functions for 3F, I mean a pair (e, 8), where s and S are positive real-valued

functions, the domain of £ is E(F), the domain of S is F2, and

(i) for each r¡ > 0, there exist at most finitely many F e ¡F2 such that 8(F) ^ r¡ ;

(ii) for each r¡ > 0, there exist at most finitely many x e E(1F) such that e(x) S r¡ ;

(iii) if x, x' e F(^") and x # x', then j(x, e(x), 6) and i(x', e(x'), 0) are disjoint ;

(iv) if F, Ke&2 and F^F, then B(F, 8(F), a, ß) and B(K, 8(K), a, ß) are dis-

joint;

(v) if x £ E(&) and Fe&2, then i(x, e(x), 0) and F(F, 8(F), a, j8) are disjoint.

(XX) Let !F be a special family and suppose that O</S<o¡<0<-2-77\ Then there

exists a pair of special a, ß, 8 functions for &.

Though a formal proof of this statement is lengthy, it requires no originality,

so we omit the details. The idea is to arrange the members of !F in a finite or in-

finite sequence Fx, F2, F3,..., and then define e and 8 inductively. One makes use

of statements (IX), (XI), (XII), (XV), (XVI), (XVII).

(XXI) Let !F be a special family, and suppose O</?<a<0<^7r. Let (e, 8) be a

pair of special a, ß, 6 functions for ¡F. If t1( 8X are two real-valued functions having

domains E(F) and J*"2 repectively, and if

0 < ex(x) ^ e(x)     for all x e E(&),

0 < 8x(F) g 8(F)   for all Fe J^2,

then (ex, 8X) is a pair of special a, ß, 8 functions for !F.

The proof of this statement is trivial.

(XXII) We now proceed to the proof of statement (A) itself. Let A be our given

Fai set. By (IV), we can choose a sequence of special families {&n}n=i such that

A = f|"= i (U &n), and for each Ke^n + X there exists F e &n with FJç F.

Let {ßn}n=i be a strictly increasing sequence in (0, fa) coverging to fa.

Let {an}™= ! be a strictly decreasing sequence in (fa, fa) converging to fa.

Let {#„}"■ ! be a strictly increasing sequence in (fa, fa) converging to fa.

LetFn=F(jg.

Let (e(1, •), 8(1, •)) be any pair of special ax, ßx, 6X functions for ß\.

Now suppose that for each k ^ n we have chosen a pair of special ak, ßk, 0k

functions (e(k, ■), 8(k, ■)) for ¡Fk in such a way that

(i) whenever l¿k¿n-l, xeEk + 1> EeiFk, and xeFnJ(F)*, then

Cl [six, e(k+l, x), 8k + 1)]nH<= B(F, 8(k, F), ak, ßk);

(ii) whenever l£k£n—l,xeEk+u and xeEk, then

Cl [i(x, e(k+l, x), ek + 1)]nHG s(x, e(k, x), dk);

(iii) whenever l^k^n-l, Ke(&k + X)2, Fe(Pk)2, and FçF, then

Cl [B(K, 8(k + l, K), ak+x, ßk + x)]nH^ B(F, 8(k, F), ak, ßk).
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Then we construct (e(« + l, •), S(«4-l, ■)) as follows. Let (e, 8) be any pair of

special aB + i, ft + i, 9n + 1 functions for ^, + 1. If x e En + 1 — En, then for some unique

Fg(J^)2, xeFr\J(F)*. By (XVIII), we can choose f(x)>0 so that ijá¿*)

implies

Cl [s{x, r¡, 9n + 1)] n 77 £ B(F, 8(«, F), an, ft).

We set £(« + 1, x) = min {e(x), £(x)}. On the other hand, if x e Fn + 1 n F„, then we

set e(«+ 1, x) = min {£(x), ^e(«, x)}.

If F g (A+1)2, then there exists a unique Fe (JQ2 with FsF. Set

S(«+1, F) = min {8(F), \h(n, F)}.

By (XXI), (£(«+1, ■), 8(n + l, ■)) is a pair of special an+1, ft + i, ft+i functions for

■^n + i, and, by (VIII) and (XIV), conditions (i), (ii), (iii) are still satisfied when «

is replaced by « + 1. Thus we can inductively construct a pair (e(n, •), 8(«, •)) of

special a„, ft, ft functions for ¡Fn in such a way that (i), (ii), and (iii) are satisfied

for every «.

Let

Un = [ U *(*, K", X), ft)l U r    (J     B(F, 8(«, F), an, ft)l.
\.xeEn J        betuna J

Then Un is open. For fixed «, all the various sets s(x, e(n, x), ft) (x g En)

and F(F, 8(«, F), an, ft) (Fe(J,)!) are open and pairwise disjoint, so that

every component of Un is contained in one of the sets s(x, e(n, x), ft) (x e Fn) or

B(F, S(«, F), a„,ft) (Fg(J^)2). It therefore follows from (VII) and (XIII) that

if W is any component of t/„, then

(1) ÎFnZsU^n.

From conditions (i) and (ii) in the definition of a pair of special a, ft 9 functions,

it follows that

Un n 77 = f U Cl [s(x, £(«, x), ft)] n 77] u T   U    Cl [B(F, 8(«, F), «n, ft)] n 771.

Consequently, conditions (i), (ii), (iii) in our inductive construction of (e(«, •),

8(«, •)) (together with the fact that x e Fn+1 — F„ implies x g Fn 7(F)* for some

F g (J^)2) imply that Un + 1 n 77s [/„ for every n.

By Urysohn's Lemma there exists a continuous function gn : H -*■ [0, 1 ] such that

g„(z) = 1 for z g 77- Un and gn(z)=0 for z e Ün + 1 n 77. Let

g{¿)  =    Î   (*)"*„(*).
n=l

Then 0^g(z)S| 1, and the series converges uniformly, so g is continuous in 77.

If z g 77- Un, then z g 77- C/m for every m^n, so that 1 =g„(z)=gn + 1(z)=gn+2(z)

= ■ • •, and hence

(2) g(z) ̂   J Q)» = (i)-1       (ZG77-C/J.
m = n
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Also, if z g Un+i, then zeUuU2,..., Un+1, so that 0=gl(z)=g2(z) = • ■ • =gn(z),

and

(3) g(z)â    2    (i)m = (i)n       (zeUn+1).
m = n + l

Let x0e A be given. We must show that g(z) -> 0 as z approaches x0 through

s(x0, 1, |tt). Take any natural number «. Since x0 g (J^ + 1, it follows that either

i0e£,ti or else x0eFnJ(F)* for some Fe(F,+1)2. In the first case, set

77=£(« + 1, x0). In the second case, (XVIII) shows that we can choose r¡ >0 small

enough so that

s(x0, % I") s B(F, 8(« +1, F), «n+1, ft+ 1).

Suppose <x, >>> g î(x0, 1, fw) and y<-q. Then, in the first case,

<X, y) e S(X0, T), §7r) s s(x0, e(«+ 1, x0), ft + 1) S C/„ + 1,

and, in the second case,

<X, y> G j(x0, r¡, |tt) £ B(F, 8(«+ 1, F), an + 1, ft + 1) £  £/B + 1.

Thus, referring to (3), we see that g(x, y)^(^)n whenever <x, y} es(x0, 1, Itt) and

;y<7?. Therefore g(z) -*■ 0 as z approaches x0 through i(x0, 1, |7r).

Let Xi be a point of X, and assume there exists an arc y at X! such that g(z) -^ 0

as z approaches xx along y. Then y has a subarc y' with one end point at xx such

that y'-{x1}£¿T1((-(i)\(i)n)). By (2), /-{xjst/,. Therefore, by (1), xt g

U ^. Since n is arbitrary,

*1 6   H   (U -^n)  = ^.
n = l

Thus, by restricting g to (2 we obtain the desired function.

(B) Ler A be a subset of X of type Fa6, and let <j> be a bounded complex-valued

function of honorary Baire class Ú2(A, R2). Then there exists a bounded continuous

complex-valued function h defined in Q such that, for each xeA, there exists an

arc y at x with y—{x}Si(x, 1, f7r) and

lim    h(z) = <^(x).
z-*x:zey

(I) Let 7 be a bounded open interval in R, and let/: 7-> F be a bounded, strictly

increasing function. Then there exists a continuous, weakly increasing function

f*: R-+ R such that/*(/(x)) = x for every x g 7. (This result is probably not new,

but I do not know of a reference for it, so I am obliged to prove it here.)

Proof. Let Z=/(7), let c=infZ, and let d=supZ. Observe that Z^(c,d),

and that/-1 : Z -> 7 is strictly increasing. I assert that for each x g (c, d)

(4) sup/_1((C x]nZ) = sup/"1^, x) n Z).

If x £ Z, the equation is trivial. Suppose x g Z. Then

c < y < f-\x) => (f(y) < x and f(y)eZ),
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so that (c,/-1^))^/"1^, x) n Z). Hence

supf-\(c, x)nZ)Z f-\x) = supf-\(c, x] n Z).

The opposite inequality is trivial, so (4) is established.

I also assert that for each x £ (c, d)

(5) inf/- \(x, d)nZ) = sup/" \(c, x] n Z).

Obviously,

inif-^x, d)nZ)^ sup f~\(c, x] n Z).

Take any >>>sup/"1((c, x] n Z). If f(y)fix, then /(x) £ (c, x] n Z, and so

y ef~\(c, x] n Z), a contradiction. Thus /(j)>x and f(y) e (x, d) n Z. There-

fore >> e/_1((x, d) n Z), so that inf/_1((x, d) r\Z)^y. In view of the choice of

y, this implies that

inif-\(x, d)nZ)ï sup/" H(c, x] n Z),

and (5) is established.

Define/* on (c, if) by

f*(x) = sup/" !((c, x] r>Z)       (x e (c, rf)).

It is clear that/* is weakly increasing and that/*(/(x))=x for every xe/. The

continuity of/* can easily be deduced from the equations

sup/*((c, x)) = /*(x),       inf/*((x, d)) = /*(x),

which are established as follows :

sup/*((c, x)) =   sup   sup/"1^, y] n Z)
c<y<x

= sup/" Hie, x)nZ)

= supf-1((c,x]nZ)

= f*(x),
inf/*((x, d)) =    inf   sup/"Hic, y] n Z)

Ä<v<d

=    inf   inf/" %¿)nZ)

= inf/" ^(x.^nZ)

= sup/" Hie, x] nZ)

= /*(*)•

We now extend/* to all of R by setting

/*(x) = inf/*((c, d))    if xúc,

/*(x) = sup/*((c, d))   if x^d,

and we are finished.
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(II) Suppose that M is a metric space and that u: M -> R is a function having the

following property. For every sequence {pn} of points of M, every p e M, and every

y e R u {-oo, +oo}, if pn -^p and u(pn) -+y as « -> co, then j e F and u(p)=y.

Under this hypothesis, w is continuous.

Proof. Let {pn} be any sequence of points in M converging to a point p e M.

We have only to show that u(pn) -* «(/>). But suppose u(pn) -+> w(p). Then there

exists a subsequence M/>n(W)} an<l tnere exists je F u {—oo, +co} such that

y¥=u(p) and u(pn(k)) -> y as A: -> oo. Since />n(fc) -»■/> as A: -> oo, this contradicts our

hypothesis.

(III) Let ^4s(—1, 1) be of type Fa6, and let ^ be a complex-valued function of

Baire class ^ 1(^4, R2). Then there exists a sequence {gn} of continuous functions,

each mapping F into R2, such that for each xe A, gn(x) ->■ ̂(x) as « -> oo.

Proof. This can be proved in a more general context, as shown in [5]. For a

quick proof of the special case stated above, we can refer to a theorem of Bagemihl

and McMillan .[1, Theorem 2], which tells us that there exist continuous real-valued

functions / and f2 defined in H such that, for each xe A, fx has angular limit

Re (</>(x)) at x and/2 has angular limit Im (^(x)) at x. For each x e R, set

gn(x) =f\x>-^ + if*\x>n)-

(IV) Now we proceed to the proof of statement (B). Let <p be a function of Baire

class ikl(A, R2) and let F be a (possibly empty) countable subset of A such that

<p(x)=tp(x) for each xe A-E. Let N be an infinite countable set with E^NqX.

Let w be a real-valued function defined on N such that w(s) > 0 for each s e N

and

2 w(s) < 21,2-1.
seif

For each xeA" = (-1, 1), let N(x)={seN: -l<s<x}. Define / on (-1, 1) by

setting

/(x) = x+   2   «<*).
seNlxï

Then/is a bounded, strictly increasing function on (— 1, 1), and |/(x)—x| <21/2 — 1.

By (I), there exists a continuous, weakly increasing function/*: R-+R such that

f*(f(x))=x for each x e (-1, 1).

Let

Ho = {<x,y}eR2:0<yúü.

For fixed <x, y} e H09

„-/.(ízíizAí)

is a strictly increasing continuous function of u that approaches +oo as u -> -t-co
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and —oo as w->- —oo. Consequently there exists precisely one number u(x, y) that

satisfies the equation

(x-(l-y)u(x,y)\
(6) u(x,y)-f*(?

y
= o.

I assert that u(x, y) is a continuous function on 770. We show this by using (II).

Suppose that <x, v> g 770, u0 e R u {-co, +oo}, {<xn, v„>}s770, <xn, jn> -> <x, y},

and u(xn, yn) -*■ u0. If u0 = +oo, then, as « -> co,

^»-(l-)',)«fa, Jn)    ,   _00

and so

(xn-(l-yn)u(xn,yn)\
u(xn,yn)-f*\r-

yn

+00,

which contradicts (6). So u0^ +<x>, and a similar argument shows that u0=£ —oo.

Thus, by (6),

0=  lim  \u(xn,yn)-ff«-V-y:)u^yJ)}
n-»»   L \ A /J

= Mo-/.(£zikÄ).

Consequently h0 = w(x, >»)• By (II), u is continuous.

From (III), there exists a sequence {gn} of continuous complex-valued functions

defined on F such that gn(x) -> i/i(x) as « -> oo for each x e A. For « ^ 2, define

h0(x,y) = (yn(n+\)-n)gn(u(x, y)) + ((n + l)-yn(n+l))gn + 1(u(x, y))

when l/(«+ l)Syè 1/«- Then ft is continuous on 770. Let {s„}"=i be all the elements

of N, where n^m implies sni= sm. Let

rn =  inf /(x),
x>sn

4 =   sup f(x) = /(jn),

Zn = <t>(Sn)-Í'(Sn)     Ü *n e E,

Zn = 0 if Jn £ F.

Notice that r„ — /„>0. If x and y are real numbers, define xvj=max {x, v} and

x A v=min {x, v}. For <x, y} e 770, set

K(x,y) = [(\-ny) V Ol[(l-^ rn+/n-2M-2^ ) V o]zn.

Then A„ is continuous in 770. Observe that An(x,y)=0 when y^\¡n. Using this

fact, it is easy to show that, if we set
co

«i = h0+ 2 An,
n = l

then ft is defined and continuous on 770.
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Let p be any point of A. The line

(7) x = (f(p)-p)y+p

passes through (p, 0>, and, since \f(p)—p\ <21'2 — 1 = ctn ftt, the part of this line

which lies in H0 is contained in s(p, 1, f tt-). We show that hx approaches >p(p)

along this line. By substituting (f(p)—p)y+p for x in the expression for An(x, y),

one obtains

An(x,y) = [(l-ny) vO]

rn + ln + 2^-iysn-p)-2f(p)^ v o]z„.

If p^sn, then f(p) S ln, and one can verify directly that (8) vanishes. If p>sn, then

f(p) Tí rn, and again one can verify directly that (8) vanishes. Thus An(x, y) vanishes

along that part of the line (7) which lies in H.

Solving (7) forf(p), we find that, along the given line,

f(p) = (x-(l-y)p)ly,
and hence

P=f*(f(p))=f*((x-(l-y)p)ly).

Therefore (if 0<yú^)p = u(x,y). Hence, if <jc,j>> satisfies (7), h£2, and l/(«+l)

5¡já 1/«, then

ho{x,y) = (yn(n+l)-n)gn(p) + ((n+l)-yn(n+l))gn + x(p),

so that h0(x,y) lies on the line segment joining gn(p) to gn + x(p). It follows that

«o(x, y) approaches ip(p) as <x, y} approaches p along the line (7). Since each An

vanishes on the part of this line lying in H, hx(x, y) also approaches </<(/>) along this

line.

Let sm be any point of E. The definition off shows that

|/(x)-x| £   2 *(*)
SEN

for all x, and from this it easily follows that

km-Sm|   =i    2   W&> I'm-iml   ̂     2   "'t5)"
seif seif

Hence

g  2 W(J) < 21,2-1 = ctn|ir.
sew

So the part of the line

(9) x = {^±^-s^y + sm

that lies in #0 is contained in s(sm, l, fa). We show that «j. approaches <p(sm) as

[('-^

t ~r *m

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



118 T. J. KACZYNSKI [July

z -*■ sm along this line. Substituting the value of x given by (9) into the expression

for A„, we obtain

A„(x,j) = [(l-«j) VO]

(10) •[(l-7-i7-|/-n-rm + /n-/m + 2(j;-l)(in-Jm)|) V0]zn.

If im<s„, then lm<rm¿ln<rn, and one can verify that (10) vanishes. If sn<sm,

then ln<rn¿lm<rm, and again one can verify that (10) vanishes. Thus, for n^m,

An(x, y)=0 when <x, y) lies on the line (9) and in 77.

If we take n=m in (10), we obtain

Am(x,j) = [(I-my) v 0]zm.

Therefore Am(x,y) approaches zm=<p(sm) — ip(sm) along the given line.

Take any <x, y} e H0 satisfying (9), and take any a and b satisfying

(11) a <sm< b.

Then f(a) èlm< i(rm+ln) < rm <,f(b), so that

(f(a)-sm)y+sm < x < (f(b)-sm)y+sm;

from which we deduce that

f(a)<(x-(\-y)sm)ly<f(b).

Since/* is weakly increasing,

a =/*(/(a)) úf*((x-(\-y)sm)ly) úf*(f(b)) = b.

Because a and b were taken to be any two numbers satisfying (11), we conclude

that

sm=f*((x-(l-y)sm)ly),

whence it follows that u(x, y)=sm. Thus

h0(x, y) = (yn(n+l)-n)gn(sm) + ((n+l)-yn(n + l))gn+1(sm)

when \¡(n + \)úy^\¡n. Consequently ft(x, v) approaches >p(sm) along the line

(9); so hi(x,y) approaches 0(ím)+^(ím)-^(sm)=^(5m) along the given line.

We have shown that, for each xe A, there exists a line segment at x, lying in

s(x, l.fir), such that ft(z)-><£(x) as z-^-x along the line segment. We do not

know that ft is bounded, but this is easily patched up. Choose a real number B

such that, for all x e A,

-B < Re ¿(x) < B,       -B < Im <¿(x) < F,

and set

h(z) = ([(Reft(z)) v (-B)] A F)+/([(Imft(z)) v (-F)] A B).
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If we extend « to a bounded continuous function defined in H, and then restrict

« to Q, we have the desired function.

(C) Let d(t) be a weakly increasing, positive, real-valued function defined for

0 < t :£ 1. Then there exists a continuous, complex-valued function k defined in Q,

with \k(z)\ á 21'2 for all z e Q, such that for each ae(0, 1] and for each arc

y £{<x,>>> : -l Ú x Ú I, 0 < y í a},

(diameter y) ^ d(a) implies (diameter k(y)) ^ 2.

Proof. Let p(x)=\J* d(t) dt (0<x^l). Then p is positive, continuous, and

strictly increasing, and p(x)á^ d(x). Let íze(0, 1] be given. Since p(x)'1 is uni-

formly continuous on each compact subset of (0, 1], there exists ee(0, 1] such

that

(\a S Xx Ú 1 and |xa-x2| < e)

implies

\p(xx)-í-p(x2Yí\ ái

Let e(a) be the supremum of all such e. Then e(a) is an increasing function of a,

and

(\a ü Xj. á 1 and \xx — x2\ < e(a))

implies

\p(xx)^-P(x2yi\ zi.

Set q(x)=)xü e(t) dt. Then q is positive, continuous, and strictly increasing, and

q(x) Ú e(x). Let m(x) = min {p(x), q(x)}. For <x, y} e Q, define

kx(y) = sin (2Trlym(y)),       k2(x, y) = sin (Arrxlp(y)),

k(x,y) = kx(y) + ik2(x,y).

Now suppose that ae(0, 1] is given, and suppose that y£{<x,y) : — 1 ̂ x^ 1,

0<y^a} is an arc with (diameter y)td(a). Choose zx = (xx, yxy and z2 = <x2,y2}

in y so that \zx —z2\ ̂ d(a). Assume without loss of generality that y2t*yx. We can

choose a' so that 0<^a' ^yx^a'^a. Since m(a')^% d(a')^\ d(a), and since

\zx—z2\ l¿d(a), we must have either

(12) \yx-y2\ ^ m(a')

or

(13) \yi-y2\ < m(a')   and    |x,.-x2| ^ %d(a').

First assume that (12) holds. Here m(y2) á nt(yx) á m(a'), so

2"lyMyi) Ú 2Trly2m(y2),
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and we have

2tt
y2m(y2)   yim(yi)

2Tr(y1m(y1)-y2m(y2))

yiy2m(y1)m(y2)

2n(y1m(y2)-y2m(y2))

yiy2m(y1)m(y2)

2Trm(a') 2tt

2Tt(yi-y2)

yiy-2.m(yx)

^   27
Ji^^Cvi)     yiy2

Thus, as <x, y} moves along y from <xx, yx)> to <x2, v2>, we see that 2Tr\ym(y)

varies over an interval of length at least 27r, and hence ft(y) varies over the whole

of the interval [—1, 1]. Therefore (diameter k(y))^2.

Now assume that (13) holds. Then

47TXi        47TX2

p(yi)  P(yz)
^ 4ttÍ

s 4'[ **>

ä «.we
Lf(«)

è 4ttÍi-

X2

■^1       -^2

-^2

p(y2) p(y

_L_|l
y2) p(yi)\\

öl]

x2   I]

pcv1)ij

p(y.

1     _j_

1

Now, bi-^al^OO^a')^«'), so I/Xj^-pCVi)"1!^- Therefore

|47rx1/p(v1)-47rx2/jp(>'2)|  ^ 2tt,

and we see that as <x, y} varies along y from <x1; j>i> to <x2, y2}, the quantity

4rrxlp(y) varies over an interval of length at least 277, so that k2(x, y) takes on every

value in the interval [—1, 1]. Thus (diameter k(y))^2.

(D) Let A^X be a set of type Fa6, and let <f> be a bounded function of honorary

Baire class Ú2(A, R2). Then there exists a bounded continuous complex-valued

function fdefined in Q such that A is the set of curvilinear convergence of fand <f> is

a boundary function for f

Proof. Let g be the function of (A) and let « be the function of (B). For t e (0, 1 ],

let

ft(r) = sup {S g (0, 1] : (yx ^t,y2^ t, <xl5 y{) e Q, <x2, y2} e Q, and

|<*i>j>i>-<*2».>'a>|<8) implies \h(xu yx)-h(x2, y2)\ <, t),

d2(t) = sup {8 g (0, 1] : (v! i t,y2^ t, (Xl, yxy e Q, <x2, y2} e Q, and

\<Xi,yi>-(x2,y2y\<8) implies \g(x1,y1)-g(x2,y2)\ g t},

d(t) = min {i ft(iO, i d2&), \t}.

Let k be the function of (C) for this d(t), and set/(z) = «(z)+g(z)A:(z) (z e Q). We

show that/is the desired function.
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Suppose xe A. Then there exists an arc y at x, lying in s(x, 1, fa), such that «

approaches </>(x) along y. But g(z) approaches 0 through s(x, 1, |7r) and k is bounded,

so g(z)k(z) approaches 0 along y. Hence f(z) approaches <f>(x) along y. Thus </>

is a boundary function for/ and ,4 is a subset of the set of curvilinear convergence

off. It only remains to show that if x is a point of the set of curvilinear convergence

of/ then x e A.To show this, let y be an arc at x along which/approaches a limit.

We may assume without loss of generality that y has an end point in «x, 1> : — 1

^x^ 1}. By the properties of g, it will be enough to show that g approaches zero

along y. Assume that g does not approach zero along y. Then there exists e e (0, 1]

and there exists a sequence {zn} such that z„ e y - {x}, zn -> x as « -> oo, and

|g(zn)| äe for all «. Write zn = <xn, yn}. Choose N so that n^N implies yn< fa.

For the time being, let « be a fixed integer greater than or equal to N. Set a=4yJ3.

Let y be the component of y n Cl [S(d(a), zn)] that contains zn. (Recall that

S(¿(a), zn)={z : \z-zn\<d(a)}.) Then

í/(a) á diameter /¿2 ¿(a),

and, since d (a) S ¿a,

y S {<x, >>> : \a ^ y ^ a}.

By the choice of k, there exist points p and q in y' with |&(/?)—k(q)\ }z2. We have

|/>-<?| ̂ 2 ¿(a) < i/i(lfl), so, by the definition of dx(t),

\h(p)~h(q)\ èfa< fa.
Similarly,

\g(p)-g(zn)\ è \a < fa,

\g(q)-g(zn)\ ufa < fa.
Thus

\f(p)-f{q)\ ̂  Ig(p)k(p)-g(q)k(q)\ - \h(p)-h(q)\
> I g(p)Kp) -g(zn)k(p) +g(zn)k(p) -g(zn)k(q)

+g(Zn)k(q)-g(q)k(q)\-fa

^ kWI \k(p)-k(q)\-\k(p)\ \g(p)-g(zn)\
-\k(q)\\g(q)-g(zn)\-fa

^ 2e-2ll2fa-2ll2fa-fa > e.

Note that \p-zn\^d(a)<fa=$yn, and similarly \q-zn\ ¿$yn.

We have now shown that, for each « ä N, there exist points pn, qn£y with

\Pn~zn\ ú$yn, kn-^n| á ij>„, and \f(pn)-f(qn)\>e- But then pn -> x and qn -> x

as « ^ co, so / does not approach a limit along y. This is a contradiction. We

conclude that g(z) -> 0 along y, and hence that x e A.

(E) Fei i£C èe a set of type Fai, and let <p be a bounded function of honorary

Baire class £ 2(A, R2). Then there exists a bounded continuous complex-valued

function f defined in D such that A is the set of curvilinear convergence off and <j>

is a boundary function for f
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Proof. If A = 0, this is trivial. If A ̂  0, then we can assume, by making a suit-

able rotation of the disk, that <1, 0> e A. Let G = D-SQ, <-£, 0» and let L=C

—{<1, 0». Because Q u X is homeomorphic with G u L, we see from (D) that

there exists a bounded continuous complex-valued function / defined in G such

that

(i) A n L is the set of all points x g L such that/ approaches a limit along some

arc at x, and

(ii) the restriction of <f> to L is a boundary function for/.

Since G is closed relative to D, we can extend/ to a bounded continuous function

/defined in D in such a way that/has <£«1, 0» as a radial limit at <1, 0>. This/

will have all the desired properties.

(F) Let S2 denote the Riemann sphere, let A^C be a set of type Fo6, and let <f>

be a function of honorary Baire class Ú2(A, S2). Then there exists a continuous

function f: D-> S2 such that A is the set of curvilinear convergence offand<f> is a

boundary function for f

(I) We suppose that

52 = {<X) yf z> e 7?3 . ;ca+j;2 + za = 1}

We let

U = [ix,y,zyeS2:-^<zú l}>

F={<x,v,z>gS2:-1 Sz<¿),

Zu = ^x,y,z}eS2:^<z^ l},

Z7 = {<x,v,z>gS2:-1 úz< -^j-

We define mappings <$>V:ZV^-U and <I>V: Zv -* V by setting

<¡>v(x, y, z) = <x(4z2- 1), X4z2 - 0, z(4z2 - 3)>       «x, v, z> g Zv)

and

<Dv(x, v, z) = <x(4z2 -1), v(4z2 - 1), z(4z2 - 3)>       «x, v, z> g Zy).

Then 4>t/ is a one-to-one continuous function from Zv onto U. Since Zj, and C/

are each homeomorphic to the unit disk D, it follows from [7, Corollary 1, p. 122]

that $>u is a homeomorphism of Zv onto £/. Similarly, <S>V is a homeomorphism of

Zv onto K.

We define a continuous function 0: S2 -> S2 by setting

<D(x, ̂, z)

*(x, v-, z)

<P(x, 7, z)

«Duix, y, z),

{x,y, -z>,

í>v(x, y, z),

—— < z < 1
oi/a =   '

2i/a = * = 21/2

1 < z <
1

21/a
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Notice that for each p e S2, the inverse image set ^>~1({p}) contains at most three

points.

(II) Most of the results of Hausdorff [2] on real-valued Baire functions can easily

be shown to hold also for functions taking values in Fn. We shall make free use

of these results in this more general form.

(III) Now we proceed to the proof of (F). Let A'' be a countable subset of A

such that the restriction of <f> to A — N is of Baire class úl(A-N, S2), and let

Ax = A -N. It will be convenient to let F„(AX) denote the class of all subsets of Ax

that are of type Fa relative to Ax, and G6(AX) the class of all subsets of Ax that are

of type G a relative to Ax. Since U and V are open subsets of S2 and U u V=S2,

we see that Ax n <p-\U) e F„(Ai), Ax-<p-1(V)eGi(Ax), and Ax-<f>-1(V)çAx

n <tS-1([/). An elegant theorem of Sierpinski [8] now enables us to choose a set

KeFa(Ax) n G6(Ax) such that

Ax-<t>-l(V) s F ç Axc\ (p-^U).

Let L = AX-K. Then F e Fa(Ax) n GÔ(AX). Moreover, <p(K)çU and <f>(L)ç V.

Letpx = (l, 0, 0>, and define >f>: A -> S2-{px} as follows. Set

<Kx) = <¡>5\<Kx)),       xeK,

<p(x) = QïKtix)),       xeL.

If xeN, we let ip(x) be any element of Z¡,uZv for which <p(</i(x))=<¿(x).

This choice of tp(x) is always possible, because ^(Z^ u Zv) 2 U u V= S2. Let

<l>0 be the restriction of <l> to Ax=KuL. I assert that <po is of Baire class

Ú l(Ax, S2-{px}). Since S2-{px} is homeomorphic to R2, it will suffice to show

that ipôKG) £ F„(Ai) for every open set G^S2-{px}. But

^ô\G) = Ax n f-KG) = [Fn ^(G)] u [F n ^(G)]

- [Fn <p-\<i>u(Zu n G))] u [F n ¿"W^v n G))] e FMi),

so i/j0 is of Baire class ^ l(y4l5 52-{/>!}). Now, Ax = A -N is of type Gd relative to

A, so (again using the fact that S2—{px} is homeomorphic to R2) we can extend

i/<o to a function <px of Baire class ¿ l(A, S2-{px}). The existence of <px shows that

0 is of honorary Baire class ^2(A, S2—{px}). The range of <]> is contained in

Zu u Zy, so that the values of 4> are bounded away from/?!. Thus, if we still think

of S2 — {px} as corresponding to the plane R2, >p corresponds to a bounded function.

By (E), there exists a continuous function/: D-> S2 — {px} such that the values

of/ are bounded away from px, A is the set of curvilinear convergence of/, and

0 is a boundary function for/. Let/denote the composite function í> °/. Then/

is continuous and $ ° </> = <£ is a boundary function for/ It only remains to show

that if x is a point of the set of curvilinear convergence of/ then xe A. Let y

be an arc at x along which /approaches a limit, and let C(/, y) denote the cluster

set of/ along y. Assume that x £ j4. Then/ does not approach a limit along y,
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so C(fi, y) contains infinitely many points. Now, $ maps at most three points

to any one given point, so ®(C(fi, y)) contains infinitely many points. But

3>(C(/, y)) is the cluster set of/=<D °fx along y, and hence/does not approach a

limit along y, contrary to our assumption. We conclude that x e A after all. This

completes the proof of the theorem.

The following questions remain open.

Problem 1. If A is an arbitrary set of type F„6 in C, does there necessarily exist

a continuous real-valued function in D having A as its set of curvilinear convergence"}

Problem 2. If A'S.C is a set of type Fa6, and if<f> is a function of honorary Baire

class Ú2(A, R), does there necessarily exist a continuous real-valued function in D

having A as its set of curvilinear convergence and <f> as a boundary function?

Appendix. Some theorems concerning functions of Baire class ^ 1 which take

values on the Riemann sphere can be obtained by the technique used to prove (F).

We use the notation set up in the proof of (F).

Theorem (a). Let M be a metric space, and let <f>: M -> S2 be a function such that

4>~1(G) is an Fa set for every open set GsS2. Then <f> is of Baire class ^ \(M, S2).

Proof. Since Land Fare open and U\J V=S2, it follows that the set <t>-\U)

is Fa, the set M-<j>~\V) is G6, and M-<p-1(V)ç<p-1(U). By the theorem of

Sierpinski [8], there exists a set K that is simultaneously F„ and Gd such that

M-<p-\V) ç F S <p-\U).

LetL = M-K. Then L is simultaneously F„ and G6, and

4>(K) £ U,       <f>(L) S V.

Define </>: M-^S2-{p1} (where px = (l,0, 0» by setting

$(x) = 0¿ HMO),    x e K,       4>(x) = «V K<Kx)),   xeL.

If G is an open subset of S2 — {p1}, then

f-HGr) = [Kn^-^aiZu n G))] u [L n <t>-\^v(Zv n G))],

so i/>_1(G) is an F„ set. Since S2 — {px} is homeomorphic to the plane, it follows that

there exists a sequence {</<„} of continuous functions, each mapping M into S2—{px},

such that </<„-> <A pointwise on M. But then <¡>(ifin(x)) -s- <î>(i/i(x))=<f>(x) for each

fixed x g M, so </> is of Baire class g \(M, S2).

A special case of Theorem (b) was proved (in effect) in [6, proof of Theorem 6]

by means of a rather messy lemma (Lemma 3). Theorem (a) provides a proof that

is both more general and more esthetically satisfactory.

Theorem (b). Let M be a metric space, and let <j>: M —> S2 be a function. Then <p

is of honorary Baire class Ú2(M, S2) if and only if, there exists a countable set

N^M such that, for every closed set F£ S2, <j> ~ 1(F) -N is a G6 set.
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Proof. The implication in one direction is trivial. Now assume that yV is countable

and that <f>~1(F) — N is a G6 set for every closed set FsS2. Let <j>0 be the restriction

of <f> to M-N. Since S2 is a subset of F3, <f>Q is of Baire class ^\(M-N, R3).

Because M—N is a Gó set, <f>0 can be extended to a function «^ of Baire class

¿ l(M, F3). Now, <px(x) e S2 except for only countably many x, so there exists

some point q in the open ball enclosed by S2 such that q is not in the range of <f>x-

Define a mapping F : F3 - {q} -*■ S2 as follows. If a e F3 - {q}, let F be the ray with

end point at q which passes through a, and let P(a) be the intersection point of F

with S2. Then F is continuous and P(a) = a for each aeS2. Let ip=P°<f>x. If

GçS2 is open, then <fi-\G) = <px1(P-1(G)), so that 0_1(G) is an F, set. Thus, by

Theorem (a), </< is of Baire class ^ 1(M, S2). Moreover, if x £ yV, then ^!(x) = ^0(x)

= <tS(x)eS2, so that ip(x)=P(<p(x))=<f>(x). Therefore ^ is of honorary Baire class

¿2(M,S2).

An alternative proof of Theorem (b) could be given by combining Theorem (a)

with the following result.

Theorem (c). Let M be a metric space, E a G6 set in M, <f> a function of Baire

class ^ 1(F, S2). Then <f> can be extended to a function of Baire class ¿ l(M, S2).

To prove this, use the technique appearing in the proof of Theorem (a).

Finally, we note that a theorem proved by Bagemihl and McMillan for real-

valued functions [1, Theorem 2] can be transferred to the Riemann sphere by

means of our technique.
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